

Standard Error & 95% Confidence

Testing the difference between two sets of interval (measured) data

Is there a difference between leaf length at the top of a tree compared with those at the bottom?

Making a Prediction

- With any scientific test you should make a prediction.
- Statistical tests use Null Hypothesis and Alternative Hypothesis.
- Null Hypothesis there is no significant difference between the two sets of data.

 Alternative Hypothesis – there is a significant difference.

Look at the data

Leaf length at the top of the tree /cm	Leaf length at the bottom of the tree /cm
12	19
15	16
11	24
17	20
15	21
9	18
14	15
13	25
10	27
19	24

Is the difference real (significant)?

Calculate the mean & standard deviation

	Leaf length at the top of the tree /cm	Leaf length at the bottom of the tree /cm
	12	19
	15	16
	11	24
	17	20
	15	21
	9	18
	14	15
	13	25
	10	27
	19	24
Mean	13.5	20.9
Standard Deviation	3.1	4.0

Calculate the standard error (=sd/\forall n)

	Leaf length at the top of the tree /cm	Leaf length at the bottom of the tree /cm
	12	19
	15	16
	11	24
	17	20
	15	21
	9	18
	14	15
	13	25
	10	27
	19	24
Mean	13.5	20.9
Standard Deviation	3.1	4.0
Standard Error	1.0	1.3

Calculate the 95% Confidence Limits

The 95% confidence limits fall at 1.96 Standard Errors above and below the mean (often rounded to 2xSE).

	Leaf length at the top of the tree /cm	Leaf length at the bottom of the tree /cm
Mean	13.5	20.9
Standard Deviation	3.1	4.0
Standard Error	1.0	1.3
Mean - 2xSE	11.5	18.3
Mean + 2xSE	15.5	23.5

So, are the data significantly different?

- If the 95% confidence limits DO NOT overlap, we can say with 95% confidence that the data are significantly different.
 - Or we say there is a less than 5% probability that the difference is due to chance alone.

