Surname	O	ther names	
Pearson Edexcel Level 1/Level 2 GCSE (9-1)	Centre Number		Candidate Number
Combined	1 Scien	160	
Combine	JUICI	ICC	
Paper 4: Chemistry		ice	
			ndation Tier
	2	Fou	

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.
- There is a periodic table on the back cover of the paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S60231A
©2017 Pearson Education Ltd.

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

1 (a) Four gases were present in the Earth's early atmosphere.

Figure 1 shows the percentages of these gases thought to have been present.

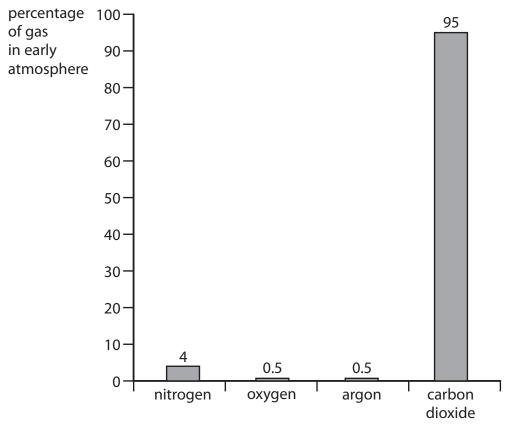


Figure 1

State from where these gases entered the atmosphere.

(1)

(b) Figure 2 shows the percentages of these four gases in the atmosphere of the Earth today.

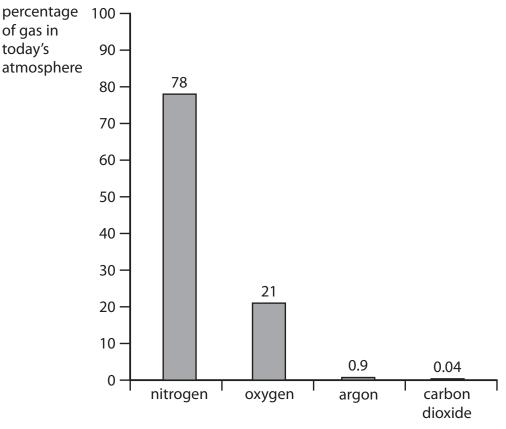


Figure 2

Which of the four gases has decreased by the largest percentage from the Earth's early atmosphere to today's atmosphere?

(1)

- A argon
- **B** carbon dioxide
- D oxygen
- (c) When primitive plants started to grow on the Earth's surface, the percentage of oxygen changed.

Explain how the growth of plants affected the percentage of oxygen in the Earth's atmosphere.

(d) Figure 3 shows the percentage of carbon dioxide in the Earth's atmosphere and the mean temperature on the Earth's surface in 1960 and 2014.

year	percentage of carbon dioxide	mean surface temperature in °C
1960	0.0318	14.0
2014	0.0401	14.4

Figure 3

(i)	Calculate the increase in the percentage of carbon dioxide in the Earth's atmosphere
	from 1960 to 2014.

(1)

increase in percentage =

(ii) Give **two** reasons why the information in Figure 3 does not prove that the increase in the percentage of carbon dioxide causes the rise in temperature.

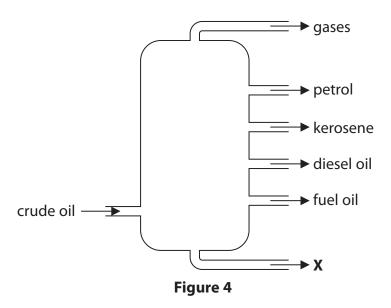
(2)

reason	ı	 																

reason 2

(Total for Question 1 = 7 marks)

2	When solid ammonium chloride is added to water a colourless solution is formed. (a) What process has occurred?							
	X		displacement					
	×	В	dissolving					
	×	C	neutralisation					
	×	D	precipitation					
	(b)	Du	ring the process the temperature of the liquid decreases.					
		De	scribe how you would measure the change in temperature.	(2)				
				(2)				
	(c)	Wł	nat type of chemical change causes a decrease in temperature?	(1)				
	×	A	combustion	(-)				
	×	В	endothermic					
	×	C	exothermic					
	X	D	neutralisation					
	(d)		another experiment the temperature change produced in water by dissolving a ferent solid can be found.					
		be	ye two variables that should be kept the same in this experiment, in order to able to compare this temperature change fairly with the temperature change oduced when the ammonium chloride dissolves in water.					
				(2)				



(Total for Question 2 = 8	marks)
mass =	g
	(2)
Calculate the mass of ammonium chloride present in 10 cm ³ of solution.	
(e) 0.25 g of ammonium chloride is mixed with water to make 25 cm ³ of solution.	

3 (a) Crude oil is separated into useful fractions by fractional distillation.

Figure 4 shows a fractional distillation column and the fractions obtained.

fractions

(i) State the name of the fraction labelled **X** in Figure 4.

(1)

(ii) State the property of the fractions that allows them to be separated by fractional distillation.

(1)

8

(iii) Petrol and kerosene are two of the fractions obtained from crude oil.

Draw one straight line from each of the fractions to a use of that fraction.

(2)

fraction fuel for jet aircraft fuel for trains fuel for cars kerosene surfacing roads and roofs

fuel for large ships and

power stations

(b) Figure 5 shows the molecular formulae and boiling points of four alkanes.

alkane	molecular formula	boiling point in °C
propane	C ₃ H ₈	-42
butane	C ₄ H ₁₀	0
pentane	C ₅ H ₁₂	36
hexane	C ₆ H ₁₄	69

Figure 5

(i) Describe how the boiling points of these alkanes change as the numbers of carbon atoms in one of their molecules change.

(1)

(ii) Calculate the relative formula mass of a molecule of propane, C_3H_8 . (relative atomic masses: C = 12, H = 1)

(1)

relative formula mass =

(iii) Propane reacts with excess oxygen to form carbon dioxide and water.

Write the word equation for this reaction.

(2)

(iv) Explain a problem caused by the incomplete combustion of propane.

(2)

(Total for Question 3 = 10 marks)

- 4 Lithium, sodium and potassium are metals in group 1 of the periodic table.
 - (a) State the name given to group 1 metals.

(1)

(b) Lithium, sodium and potassium react with water.

Small pieces of each of these metals are added to separate large volumes of water.

Figure 6 shows the time each metal takes to react completely and the observations during the reaction.

metal	time for metal to react completely in s	observations
lithium	20	effervescence moves slowly on the surface makes an alkaline solution
sodium	10	melts vigorous effervescence moves quickly on the surface makes an alkaline solution
potassium	5	melts vigorous effervescence gas evolved catches fire moves very quickly on the surface makes an alkaline solution

Figure 6

In all three reactions the same gas is produced.

What is the name of this gas?

(1)

- **A** carbon dioxide
- **B** chlorine
- **D** oxygen

(c)	Rubidium is below potassium in group 1.	
(-)	In another experiment, a small piece of rubidium is added to water.	
	(i) Use Figure 6 to predict the time taken for this piece of rubidium to react comp	letely. (1)
	time taken =	S
	(ii) Give two observations you would expect to make when rubidium is added to v	water. (2)
1		
2		
(d)	State a safety precaution that should be taken when group 1 metals are added to	water. (1)

(i) Write the word equation for this reaction.	
	(2)
(ii) In an experiment to determine the empirical formula for calcium oxide, 1.05 g of calcium combined with 0.42 g of oxygen.	
Calculate the empirical formula of the calcium oxide. (relative atomic masses: $Ca = 40$, $O = 16$)	
You must show your working.	(3)
empirical formula of calcium oxide =	
(Total for Question 4 = 11	

5 (a) Sodium has an atomic number of 11.

В

 \times C

 \times D

Which line in the table shows the correct numbers of protons, neutrons and electrons in a positively charged sodium ion, Na⁺?

(1)

	number of						
protons	neutrons	electrons					
10	12	11 10 11					
10	11						
11	10						
11	12	10					

(b) Fluorine has an electronic configuration 2.7.

Fluorine gas exists as diatomic molecules. In each molecule of fluorine, the two fluorine atoms are joined by a covalent bond.

Draw a dot and cross diagram to show the electrons in a molecule of fluorine, F_2 . Show outer electrons only.

(2)

(c) Sodium reacts with fluorine to form sodium fluoride, NaF.

Complete the balanced equation for this reaction.

(2)

2Na +NaF

(d) Sodium fluoride is an ionic compound.	
(i) Describe how a sodium atom and a fluorine atom interact to form a sodium ion, Na ⁺ , and a fluoride ion, F ⁻ .	(2)
(ii) Evaluin why sodium fluoride is able to conduct electricity when it is malten	
(ii) Explain why sodium fluoride is able to conduct electricity when it is molten but not when it is solid.	(2)

(e) (i) Figure 7 shows the melting point of the metals in group 1 of the periodic table.

element	melting point in °C		
lithium	181		
sodium	98		
potassium	64		
rubidium			
caesium	29		
francium	27		

Figure 7

Estimate the melting point of rubidium.

.....°℃

(ii) Each of the metals in Figure 7 reacts with fluorine to form a metal fluoride.

Give the name of a group 1 metal that reacts with fluorine more vigorously than sodium.

(1)

(1)

(Total for Question 5 = 11 marks)

6 (a) A student investigated the rate of reaction between magnesium ribbon and excess dilute hydrochloric acid.

The word equation for the reaction is

magnesium + hydrochloric acid → magnesium chloride + hydrogen

The total volume of hydrogen evolved was measured every 10 seconds for 120 seconds.

The graph in Figure 8 shows the results obtained by the student.

total volume of hydrogen collected in cm³

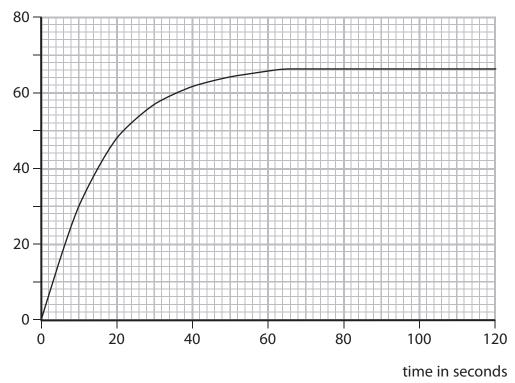


Figure 8

(i) Using the graph, give the time in seconds at which the reaction stopped.

(1)

(ii) Give the reason why the reaction stopped.

(1)

	lse the graph to calculate the average rate of reaction during the first 0 seconds, in cm ³ of hydrogen produced per second.	(2)
 		(=)
 	average rate of reaction =	cm ³ s
C	he experiment was repeated at a higher temperature, keeping all other onditions exactly the same. his change caused the reaction to take place more quickly.	
	On the graph in Figure 8, sketch a line to show the results you would expect a this experiment.	(2)
	he rate of the reaction can be changed by adding a solid catalyst to the eaction mixture.	
	Which line in the table shows how the final volume of hydrogen produced nd the mass of the catalyst change?	(1)
	change in final volume	(1)
	change in mass of catalyst	

		change in final volume of hydrogen	change in mass of catalyst		
X	A	increases	no change		
X	В	no change	decreases		
X	C	no change	no change		
X	D	increases	decreases		

(6)

*(b) Calcium carbonate reacts with dilute hydrochloric acid to produce carbon dioxide gas.

The word equation for the reaction is

Two samples of calcium carbonate are provided.

One sample is in the form of large marble chips and the other sample is in the form of small marble chips.

Describe, in detail, an investigation to find the effect of using small marble chips rather than large marble chips on the rate of this reaction.

(Total for Question 6 = 13 marks)
(.ourior gaestion o – 15 marks)
TOTAL FOR PAPER = 60 MARKS

The periodic table of the elements

_						
0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86
_		19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85
9		16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin	207 Pb lead 82
က		11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81
	•			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79
				59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77
	1 H hydrogen			56 Fe iron 26	101 Ru ruthenium 44	190 Os osmium 76
				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75
		mass ool umber		52 Cr	96 Mo molybdenum 42	184 W tungsten 74
	Key relative atomic mass atomic symbol atomic (proton) number			51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73
		relativ ato atomic		48 Ti tttanium 22	91 Zr zirconium 40	178 Hf hafnium 72
	•		•	45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56
_		7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55

^{*} The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.