Surname	Other nam	es
Pearson Edexcel Level 1/Level 2 GCSE (9-1)	Centre Number	Candidate Number
Combined	Science	<u> </u>
Combine		
Paper 3: Chemistry		
_		Higher Tier
_	1	Higher Tier

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.
- In questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.
- There is a periodic table on the back cover of the paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S58257A
©2017 Pearson Education Ltd

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 (a) Hydrogen sulphide, H₂S, is a simple molecular, covalent compound.
 - (i) A hydrogen atom has one electron in its outer shell. A sulfur atom has six electrons in its outer shell.

Which of the following is the dot and cross diagram of a molecule of hydrogen sulfide?

(1)

- A H * H * S
- C H×H×S
- (ii) Which row in Figure 1 shows the properties of a simple molecular, covalent compound such as hydrogen sulfide?

(1)

		melting point	boiling point	conduction of electricity
×	A	high	high	poor conductor
X	В	high	high	good conductor only when liquid
X	C	low	low	poor conductor
X	D	high	high	good conductor

Figure 1

(i)	State the meaning of the term omnirical formula	
(1)	State the meaning of the term empirical formula .	(1)
(ii)	A compound of sulfur and fluorine contains 4.8 g of sulfur and 17.1 g of fluorine	uorine.
()	Calculate the empirical formula of this compound.	
	You must show your working.	
	(relative atomic masses: $F = 19$, $S = 32$)	(2)
		(3)
	empirical formula =	
c) 48.	0 g of sulfur dioxide is provided.	
	culate the number of sulfur dioxide molecules, SO ₂ , in this sample.	
	lative atomic masses: $O = 16.0$, $S = 32.0$;	
-	ogadro constant = $6.02 \times 10^{23} \text{ mol}^{-1}$)	(2)
		(3)
	number of molecules =	

	(Total for Question 2 – 0 ms	velce)
	Using the rules of solubility, suggest the name of a solution that will react with calcium nitrate solution to form an insoluble solid.	(1)
	(c) Calcium nitrate is a soluble salt.	
	State the formulae of the ions in calcium nitrate.	(2)
	(b) Calcium nitrate, Ca(NO ₃) ₂ , is an ionic solid.	
	(iii) Write the balanced equation for the reaction between calcium carbonate and nitric acid to form calcium nitrate, Ca(NO ₃) ₂ .	(3)
	(ii) Explain why the calcium carbonate is added until some solid remains at the bottom of the beaker.	(2)
	☑ D pure water	
	☑ C neutral	
	■ B alkaline	
	A acidic	(1)
	The solid calcium carbonate is added until some remains at the bottom of the beat (i) After this reaction the liquid in the beaker is	aker.
	nitric acid in a beaker.	
2	(a) Calcium nitrate solution can be made by adding solid calcium carbonate to dilute	

BLANK PAGE

3 Figure 2 shows the apparatus that can be used to electrolyse sodium chloride solution in the laboratory.

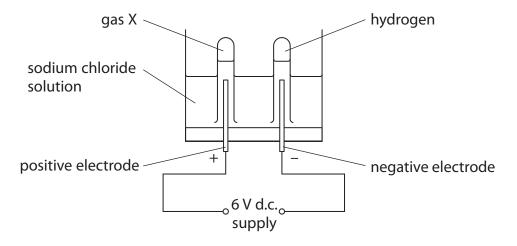


Figure 2

- (a) Gases are produced at both electrodes.
 - (i) State the name of the yellow-green gas X formed at the positive electrode.

(1)

(ii) Describe the test to show that the gas formed at the negative electrode is hydrogen.

(2)

(b) Explain why sodium chloride solution can conduct electricity.

(2)

(c) Some of the solution remaining after the electrolysis was tested with litmus pap The paper turned blue.	er.
Explain why the litmus paper turned blue.	(2)
(d) Write the half equation for the formation of hydrogen gas from hydrogen ions a a negative electrode.	t (2)
(Total for Question 3 = 9 r	

4	The elements beryllium, magnesium, calcium, strontium and barium are in group 2 of the periodic table.			
	(a)	Eac	ch calcium atom contains 20 electrons.	
		Wł	nich of the following is the electronic configuration of a calcium atom?	(1)
	X	A	2.8.10	
	X	В	2.8.8.2	
	X	C	2.2.8.8	
	X	D	8.10.2	
	(b)	Sta	ate how the position of barium in the periodic table shows that it is a metal.	(1)
	(c)	Ва	rium has a melting point of 714 °C.	
		Exp	olain, in terms of structure and bonding, why barium has a high melting point.	(3)

- (d) There are three common isotopes of magnesium.
 - (i) These isotopes are shown in Figure 3.

Complete Figure 3 to show the number of protons and neutrons in an atom of each of the other two isotopes.

(2)

isotope	mass number	number of protons in an atom	number of neutrons in an atom
magnesium-24	24	12	12
magnesium-25	25		
magnesium-26	26		

Figure 3

(ii) A sample of magnesium contains 78.60% magnesium-24, 10.11% magnesium-25 and 11.29% magnesium-26.

Use this information to calculate the relative atomic mass of magnesium in this sample.

Give your answer to 3 significant figures.

(Total for Question 4 = 11 marks)
relative atomic mass =

5 (a) Students A, B, C and D carry out experiments to find the mass of oxygen that combines with a given mass of magnesium, when the magnesium burns completely.

They use the apparatus shown in Figure 4.

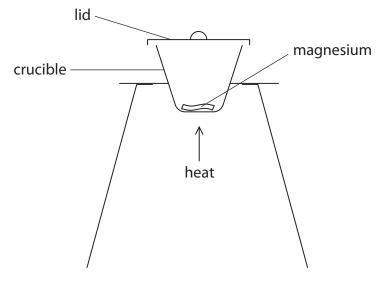


Figure 4

(i) During heating the students raise the lid slightly from time to time.Explain why this is necessary.

(2)

(ii) The table shows the results obtained by the four students.

Which student obtained an anomalous result?

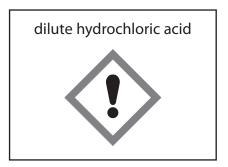
(1)

student	mass of magnesium mass of magnesium used / g oxide formed / g		mass of oxygen reacted / g	
⊠ A	0.12	0.20	0.08	
В	0.24	0.40	0.16	
⊠ C	0.36	0.56	0.20	
⊠ D	0.48	0.80	0.32	

(iii) A student is asked to prove that the reaction that has taken place in the crucible is complete.	
Describe an additional step that a student could carry out to prove that all the magnesium had reacted.	he
	(2)

*(b) Explain how, in this reaction, magnesium and oxygen atoms form a solid that has a high melting point.	
ag	(6)

(Total for Question 5 = 11 marks)
(Total for Question 5 – 11 marks)



6	(a)	A student has been asked to investigate how the pH changes when calcium oxide is added, a little at a time, to dilute hydrochloric acid.	
		Describe how the student should carry out this investigation.	(3)
	(b)	A strong acid reacts with a strong alkali to form a neutral solution.	
		Write the ionic equation for this reaction.	(2)
•••••	(c)	A solution of hydrochloric acid has a pH of 1.	
		Explain the pH change when 10 cm ³ of this acid is diluted with water to make 100 cm ³ of solution.	(2)
			(2)

(d) Acids are a hazard if a high concentration of hydrogen ions is present.

Hydrochloric acid is a strong acid, ethanoic acid is a weak acid.

Figure 5 shows the labels on bottles of dilute hydrochloric acid and concentrated ethanoic acid.

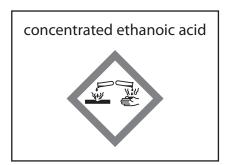


Figure 5

Explain why the hazard of the dilute hydrochloric acid is lower than the hazard of concentrated ethanoic acid, even though hydrochloric acid is a strong acid and ethanoic acid is a weak acid.

(Total for Question 6 = 11 marks)
(- /

TOTAL FOR PAPER = 60 MARKS

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

The Periodic Table of the Elements

0	4 He helium 2	20 neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
7		19 fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9		16 Oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	Elements with atomic numbers 112-116 have been reported but not fully authenticated
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic numbers a
က		11 boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81	ents with ato
	'			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	[272] Rg roentgenium
				59 nickel 28	106 Pd palladium 46	195 Pt platinum 78	Ds damstadtium 110
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
	1 hydrogen 1			56 iron 26	Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
		nass ool umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
	Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
		relativ ato atomic		48 Ti tttanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
	'			45 Sc scandium 21	89 Yttrium 39	139 La* lanthanum 57	[227] Ac* actinium 89
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
~		7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.