Surname	Other name	es
Pearson Edexcel Level 1/Level 2 GCSE (9-1)	Centre Number	Candidate Number
Combined	Science	
COMMING		
Paper 3: Chemistry		
	1	undation Tier
Paper 3: Chemistry Additional Sample Assessment Material f	1 Fo	undation Tier
Paper 3: Chemistry	1 Fo	undation Tier

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.
- There is a periodic table on the back cover of the paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S58256A ©2017 Pearson Education Ltd.

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

A student is investigating the maximum mass of sodium chloride that can be dissolved in 100 cm³ water at room temperature.

The student has been given 1.0 g samples of solid sodium chloride to dissolve in the water.

(a) Draw **one** straight line from each substance to its state symbol.

(2)

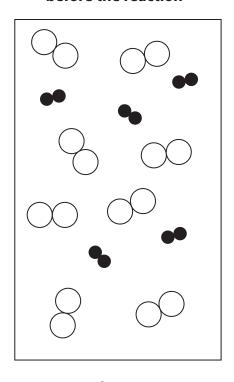
substance state symbol aq solid sodium chloride g sodium chloride solution I water

(b) Which row of the table shows the correct formula of sodium chloride and of water?

		sodium chloride	water
X	A	NaCl ₂	H ₂ O
X	В	NaCl ₂	HO ₂
X	C	NaCl	H ² O
X	D	NaCl	H ₂ O

(1)

(c) The method	the student uses is	
step 1	fill a 100 cm ³ beaker with tap water	
·	·	
step 2	add 1.0 g sodium chloride and see if it dissolves	
step 3	keep adding 1.0 g portions of sodium chloride until a portion of solid does not dissolve completely	
-	improvements that could be made, one to step 1 and one to step 2 , more accurate result.	
		(4)
step 1 improvemer	nt	
explanation		
step 2 improvemer	nt	
explanation		
CAPICITATION		
(d) In step 3 . so	ome sodium chloride remains undissolved.	
	nat would you see in the beaker when this step is complete.	
(i) State Wi	ide would you see in the seaker when this step is complete.	(1)
(ii) State the	e name of the method that could be used to separate the	
	lved sodium chloride from the mixture.	(1)
		(1)
	(Total for Question 1 = 9 ma	


- 2 Hydrogen reacts with chlorine to form hydrogen chloride.
 - (a) Write the word equation for this reaction.

(1)

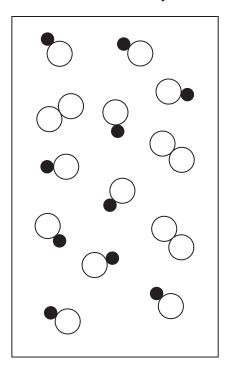

(b) In an experiment some hydrogen molecules, H₂, are mixed with chlorine molecules, Cl₂, and reacted to form hydrogen chloride molecules, HCl.

Figure 1 shows the mixture of gases before they have reacted and then after the reaction is complete.

before the reaction

after reaction complete

key:

hydrogen molecule, H₂

chlorine molecule, Cl₂

hydrogen chloride molecule, HCl

Figure 1

(i) For this sample, calculate the simplest ratio of hydrogen molecules that have reacted to chlorine molecules that have **reacted**.

You must show your working.

(2)

ratio of hydrogen molecules reacted: chlorine molecules reacted =

(ii) Which is the balanced equation for the reaction of hydrogen with chlorine to form hydrogen chloride?

(1)

- \triangle A H + CI \rightarrow HCI
- \blacksquare **B** H₂ + 2Cl \rightarrow H2Cl
- \blacksquare **C** $H_2 + CI_2 \rightarrow 2HCI$
- \square **D** $5H_2 + 8CI_2 \rightarrow 10HCI$
- (c) When hydrogen chloride gas, HCl, is dissolved in water an acidic solution is formed.
 - (i) Give the name of the acid.

(1)

(ii) What colour is seen when methyl orange is added to this acidic solution?

(1)

- A blue
- 🛛 **B** green
- C pink-red
- **D** orange

(Total for Question 2 = 6 marks)

3	(a) (i)	Which type of water is potable water?	(1)
	×	A tap water	(1)

sea water

waste water

ground water

(ii) When sea water is distilled a white solid and a colourless liquid are obtained. Give the name of the main substance present in

(2)

the white solid

(b) Four equally sized pieces of pure metals, **A**, **B**, **C** and **D**, are dropped into water. Figure 2 shows what was observed.

the colourless liquid

metal	colour of metal	observation in water
Α	silver coloured	fizzing
В	silver coloured	a small number of bubbles form
С	silver coloured	no fizzing
D	red-brown coloured	no fizzing

Figure 2

The four metals are known to be calcium, copper, magnesium and silver.

Use the data to give the names of the metals **A**, **B**, **C** and **D**.

(3)

A	 	 	 	
В				
C				
D	 	 	 	

	(Total for Question 3 = 9 marks)	
	is a liquid and not a solid. (3)	
	Explain, in terms of forces between the molecules, why water at room temperature	
(c)	Water is a simple molecular, covalent substance.	

4 (a) Figure 3 shows information about the charges and relative masses of the three subatomic particles.

	particle A	particle B	particle C
charge	positive	neutral	negative
relative mass	1	1	1 1840

Figure 3

Use the information to give the names of particles A, B and C.

(2)

article A	
article B	

(b) Figure 4 shows a diagram of an atom of sulfur.

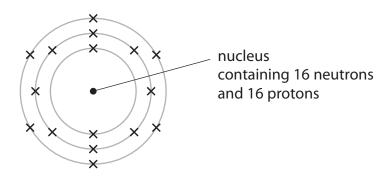


Figure 4

(i) State why this atom of sulfur has an atomic number of 16 and a mass number of 32.

(2)

(ii) Give the electronic configuration of an atom of sulfur.

(1)

- (c) Hydrogen sulphide, H₂S, is a simple molecular, covalent compound.
 - (i) A hydrogen atom has one electron in its outer shell. A sulfur atom has six electrons in its outer shell.

Which of the following is the dot and cross diagram of a molecule of hydrogen sulfide?

(1)

- A H * H * S *
- C H×H×S:
- (ii) Which row in Figure 5 shows the properties of a simple molecular, covalent compound such as hydrogen sulfide?

(1)

		melting point	boiling point	conduction of electricity
X	Α	high	high	poor conductor
X	В	high	high	good conductor only when liquid
X	C	low	low	poor conductor
X	D	high	high	good conductor

Figure 5

(d) A compound of sulfur was analysed to determine its empirical formula.(i) State the meaning of the term empirical formula.	(1)
(ii) A compound of sulfur and fluorine contains 4.8 g of sulfur and 17.1 g of fl Calculate the empirical formula of this compound.	uorine.
You must show your working. (relative atomic masses: $F = 19$, $S = 32$)	(3)
empirical formula =(Total for Question 4 = 1	

BLANK PAGE

5 (a) Calcium nitrate solution can be made by adding solid calcium carbonate to dilute nitric acid in a beaker.

The solid calcium carbonate is added until some remains at the bottom of the beaker.

(i) The mixture in the beaker is filtered to remove the excess solid calcium carbonate.

Draw a diagram to show the apparatus used to filter the mixture and to collect the filtrate.

(2)

(ii) Explain why the calcium carbonate is added until some solid remains at the bottom of the beaker.

(2)

(iii) Write the balanced equation for the reaction between calcium carbonate and nitric acid to form calcium nitrate, $Ca(NO_3)_2$.

(3)

(b) Calculate the relative formula mass of strontium nitrate, Sr(NO ₃) ₂ .	
(relative atomic masses: $N = 14$, $O = 16$, $Sr = 88$)	(2)
relative formula mass =	
(c) 100 g of strontium nitrate is dissolved in water to make 400 cm ³ of solution.	
Calculate the concentration of this solution in g dm ⁻³ .	(3)
concentration =	g dm ⁻³
(Total for Question 5 = 12	marks)

6 Figure 6 shows the apparatus that can be used to electrolyse sodium chloride solution in the laboratory.

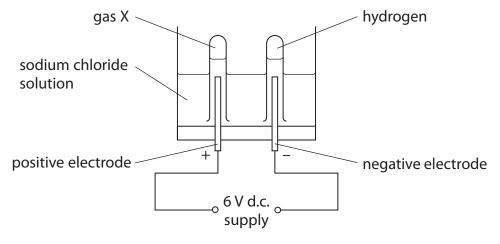


Figure 6

(a) State what could be added to the circuit to show that an electric current is flowing.

(1)

(b) What is the name of the electrode where hydrogen is formed?

(1)

- **A** anion
- **B** anode
- **C** cation
- **D** cathode
- (c) Gases are produced at both electrodes.
 - (i) State the name of the yellow-green gas X formed at the positive electrode.

(1)

(ii) Describe the test to show that the gas formed at the negative electrode is hydrogen.

(2)

(d) Explain why sodium chloride solution can conduct electricity.	(2)

*(e) Molten zinc chloride can l	pe electrolysed.			
Describe how this experin		t in a laboratory, expla	aining how	
the products of this electr	olysis are formed.		((6)

(Total for Question 6 = 13 marks)
TOTAL FOR PAPER = 60 MARKS

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

BLANK PAGE

BLANK PAGE

The periodic table of the elements

This							
Thickness Thic	0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86
This column	7		19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85
State Color Colo	9		16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84
1	2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83
1	4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb
1	က		11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81
1		'			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80
1					63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79
1					59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78
Secondium Seco					59 Co cobalt 27	103 Rh rhodium 45	192 Ir indium 77
Secondary 139 178 184		1 Hydrogen 1			56 Fe iron 26	Ru ruthenium 44	190 Os osmium 76
Septiment Sept					55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75
9 Be beryllum 4 A			mass ɔol umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74
9 Be beryllum 4 A		Key relative atomic n atomic symb		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	
2 Ba berium 38 Ba berium 38 Ba berium 56 6				48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	
					45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57
7 Li	2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56
	-		7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55

^{*} The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

