Surname	Other nar	nes
earson Edexcel evel 1/Level 2 GCSE (9–1)	Centre Number	Candidate Number
Combined	Science	
Combined	Science	
Paper 1: Biology 1	Jeienee	
	Jeienee	Higher Tier
		Paper Reference
Paper 1: Biology 1		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must **show all your working out** with **your answer clearly identified** at the **end of your solution**.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

	· —	
1	In 2014, nearly 155 000 people died from cardiovascular disease in the UK.	
	(a) Give the reason why cardiovascular disease is a non-communicable disease.	(1)
	(b) Drugs have been developed to treat people with cardiovascular disease.	
	Developing drugs involves many stages. One stage involves testing the drugs on other mammals before testing them on humans.	
	Give one disadvantage of using other mammals for drug testing.	(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) Figure 1 shows information about the BMI and the lifestyle of two males, P and Q, who have the same height and age.

ala	DAAL	physical exercise	percentage of total daily intake of nutrients (%)				
male	BMI	in hours per week	carbohydrate	protein	fat		
Р	24	7	50	20	30		
Q	29	2	50	15	35		

Figure 1

(i) Which measurements are used to calculate BMI?	(1)
■ A waist and hip	
■ B hip and mass	
■ C height and mass	
□ Waist and height	
(ii) Explain which male has a greater risk of developing cardiovascular disease.	(3)

DO NOT WRITE IN THIS AREA

(d) Figure 2 shows the use of a stent to treat cardiovascular disease.

Figure 2

	(Total for Question 1 = 9 mai	rks)
		(5)
Explain now a stent works to treat cardiovascula	ir disease.	(2)

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

(2)

2 Corn is one of the world's most important crop plants.

Native Americans grew an early form of corn called teosinte. Modern corn has been developed by selective breeding of teosinte plants.

Figure 3 shows some stages in the development of modern corn.

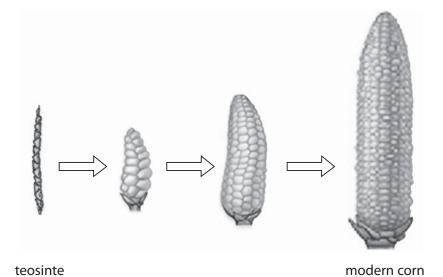


Figure 3

(a) Give reasons why native Americans selectively bred teosinte.

DO NOT WRITE IN THIS AREA

o) Describe how selective breeding has produced modern corn.	(3)
Genetic engineering can also be used to produce a new variety of modern corn.	
Describe how the genome of this new variety of corn is different from the genome of corn that has not been genetically engineered.	
genome of confituatinas not been genetically engineered.	(2)
d) Explain why restriction enzymes are used in the process of genetic engineering.	
a, Explain will, restriction enzythes are used in the process of genetic engineering.	(2)
(Total for Question 2 = 9 m	arks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3 (a) Figure 4 shows a photomicrograph of onion cells.

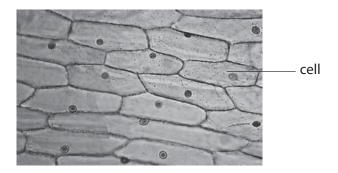


Figure 4

(i) The width of the labelled cell in Figure 4 is 6 mm. The cell has been magnified 750 times.

Calculate the actual width of this cell in mm.

Give your answer in standard form.

(3)

.....mm

- (ii) The most appropriate unit of measurement to record the length of a cell under a light microscope is a
 - (1)
- **A** centimetre
- **B** micrometre
- C nanometre
- **D** picometre

DO NOT WRITE IN THIS AREA

(b) Give the name of the phase of the cell cycle during which DNA replication	takes place. (1)
(c) During prophase of mitosis, the	(1)
■ A cell elongates	(1)
☑ B cell halves in size	
C cytoplasm divides	
☑ D nuclear membrane breaks down	
(d) Figure 5 shows a plant cell in anaphase of mitosis.	
ANN	
Figure 5	
Describe what occurs during anaphase of mitosis.	(3)
(Total for Question 3	= 9 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Some students investigated the effect of sucrose concentration on the change in mass of beetroot chips.

A beetroot chip was weighed, immersed in water for 30 minutes and then reweighed. This was repeated using five more beetroot chips and five different concentrations of sucrose solution.

The results are shown in Figure 6.

chip	concentration of sucrose solution mol per dm ⁻³	starting mass of beetroot chip in grams	end mass of beetroot chip in grams
1	0.0 (water)	2.56	3.89
2	0.2	2.47	2.88
3	0.4	1.99	2.00
4	0.6	2.30	2.12
5	0.8	2.15	1.84
6	1.0	2.22	1.62

Figure 6

(a) (i) Calculate the percentage change in mass for chip 5.

Give your answer to an appropriate number of decimal places.

(3)

					5 and o		(3)

DO NOT WRITE IN THIS AREA

NOT

*(b) A student set up an experiment to investigate osmosis as shown in Figure 7.

The student used visking tubing which is a partially permeable membrane.

The student put 25 cm³ of 20% sucrose solution into visking tube 1 and 25 cm³ of distilled water into visking tube 2.

Both tubes were placed in a 5% sucrose solution and left for 1 hour.

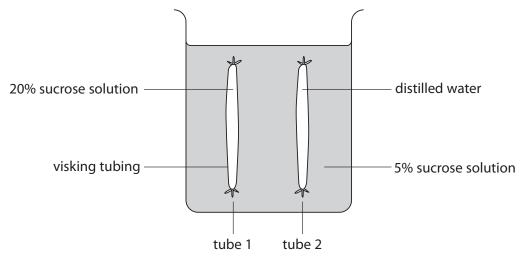


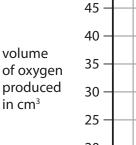
Figure 7

Explain how and why tube 1 and tube 2 would look different after one hour.

(6)

(Total for Question 4 = 12 marks)

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA

5 Catalase is an enzyme.

Catalase breaks down hydrogen peroxide into oxygen and water.

(a) The effect of pH on the activity of catalase was investigated. The volume of oxygen produced in one minute at each pH was recorded.

The results can be seen in Figure 8.

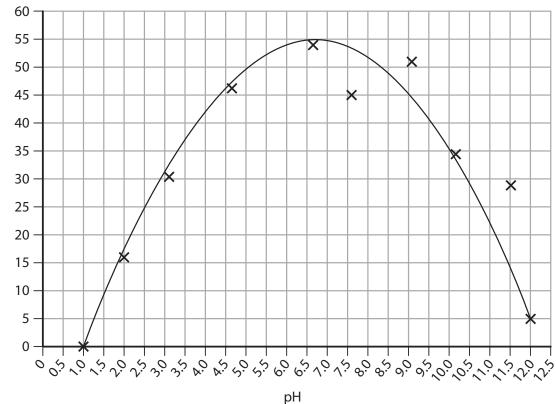


Figure 8

(i)	Describe the	effect of	pH on the	activity of	f catalase.
-----	--------------	-----------	-----------	-------------	-------------

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	(ii) Explain why the volume of oxygen produced changes above pH7.	(3)
	(iii) The investigation was improved.	
	State two variables that should be controlled in the improved method.	(2)
1		

(b) The results for the improved method are shown in Figure 9.

	volume of oxygen produced in cm ³				
рН	repeat 1	repeat 2	repeat 3	repeat 4	mean
1	1.2	1.6	1.4	1.8	1.5
4	37.7	48.3	38.1	39.9	38.6
7	53.0	51.2	52.8	61.0	
10	29.0	28.5	29.6	28.7	29.3
12	5.2	1.8	1.0	1.4	1.4

Figure 9

(i) Calculate the most appropriate mean volume of oxygen produced at pH 7.

(2)

cm [.]

DO NOT WRITE IN THIS AREA

(10001101	4
	Question 5 = 11 marks)
	(2)
(ii) Describe how the method could be developed to find the catalase activity.	optimum pH for

6 (a) The bonds joining the two strands of a DNA molecule together are

(1)

- A weak peptide bonds
- **B** strong peptide bonds
- C weak hydrogen bonds
- **D** strong hydrogen bonds
- (b) (i) Figure 10 shows the percentages of bases for three organisms.

	percentage of each base in DNA (%)			
organism	adenine	thymine	cytosine	guanine 19.2
Human	30.8	30.8	19.2	19.2
Beetle	28.4	28.4		
Ebola virus	23.7	17.0	26.2	27.0

Figure 10

Calculate the percentage of cytosine for the beetle.

(2)

(ii) Explain why the information given about the Ebola virus indicates that this virus does not have a typical DNA structure.

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) Figure 11 shows a Petri dish containing *E. coli* bacteria. The bacteria have been genetically modified to contain a phosphorescent gene so they glow in the dark.

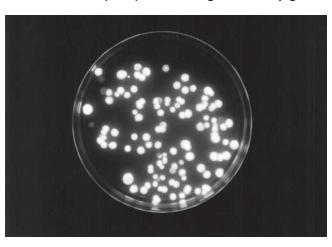


Figure 11

I	Explain how a bacterial cell can be genetically modified to glow in the dark.		
		(4)	
	(Total for Question 6	= 10 marks)	
	TOTAL FOR PAPER	= 60 MARKS	

DO NOT WRITE IN THIS AREA

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

