Write your name here			
Surname		Other names	
Pearson Edexcel Level 1/Level 2 GCSE (9–1)	Centre Number		Candidate Number
Physics Paper 1			
		Fou	ındation Tier
Sample Assessment Material for first to Time: 1 hour 45 minutes	eaching September 2		Paper Reference 1PH0/1F
You must have: Calculator, ruler			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- In questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 (a) The Moon that orbits the Earth is

(1)

- A a comet
- B a dwarf planet
- **C** a natural satellite
- **D** an asteroid
- (b) The value of g (gravitational field strength) on Earth is 10 N/kg.

On the Moon g is 1.6 N/kg.

An object weighs 10N on Earth.

What would it weigh on the Moon?

(1)

- ☑ A 0.16 N
- B 1.6 N
- ☑ D 60 N

DO NOT WRITE IN THIS AREA

NOT

(c) Figure 1 is a table showing the distance from the Sun of the orbit of some planets.

The distances are in AU (astronomical units).

1 AU = 150 000 000 km

planet	distance of orbit from the Sun in AU
Mercury	0.39
Earth	1
Mars	1.5
Jupiter	5.2
Neptune	30.1

Figure 1

(i) State the distance of Earth from the Sun in kilometres.

(1)

distance of Earth from the Sun =km

(ii) One of the planets in the table orbits the Sun between the orbits of Earth and Jupiter.

Calculate the distance from the Sun to this planet in kilometres.

(2)

distance from the Sun =	=	kr	r
-------------------------	---	----	---

(d) Explain why Mercury orbits the Sun in a much shorter time than Neptune orbits the Sun.

(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(e) Figure 2 shows part of the circular orbit of a planet around the Sun.

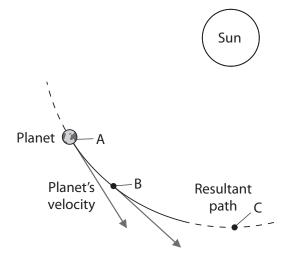


Figure 2

(i) Give the name of the force that keeps the planet moving in a circular orbit.

(1)

(ii) The direction of the velocity of the planet at points A and B is shown by the arrowed lines.

Add an arrowed line to the diagram to show the direction of the velocity at C.

(1)

(Total for Question 1 = 9 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2 (a) A car approaches traffic lights.

The traffic lights turn to red so the car has to stop.

Which of the following factors affects the thinking distance when the car has to stop?

- A condition of the road
- **B** mass of the car
- C reaction time
- **D** worn brakes
- (b) Figure 3 shows how the thinking distance and braking distance change depending on the speed of a car.

speed in km / h	speed in m / s	thinking distance in m	braking distance in m	stopping distance in m
50	14	21	21	42
60	17	25	31	56
70		29	42	71
80	22	33	55	88
90	25	37	85	107
100	28	42	85	127

Figure 3

(i) Fill in the gap in the table.

(1)

(ii) A student studies these results and writes the conclusion:

'The thinking distance is proportional to the speed of the car'.

Comment on the student's conclusion.

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) (i)	The car is moving at 90 km/h when the driver has to stop.
	Calculate the thinking time of the driver.

Using the equation:

time = distance ÷ average speed

(2)

thinking time =s

(ii) A car has a mass of 1300 kg.

Calculate the kinetic energy of the car when it is travelling at 20 m/s.

(2)

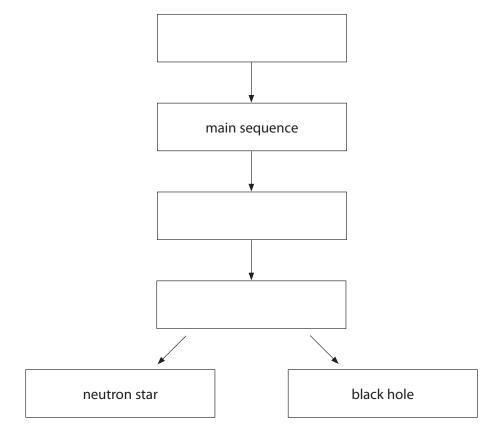
kinetic energy = J

(Total for Question 2 = 9 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- The Sun is a star that is in a stable state called the main sequence.
 - (a) What will the Sun become at the end of its main sequence?


(1)

- A a black hole
- B a nebula
- **D** a supernova
- (b) Stars that have a mass much larger than that of the Sun have a different life cycle.

Choose words from the box to complete the life cycle of a massive star.

(3)

black dwarf galaxy nebula red dwarf
red super giant supernova white dwarf

DO NOT WRITE IN THIS AREA

(Total for Question 3 = 8	marks)
(ii) Name the force that prevents the Sun from expanding.	(1)
d) The Sun, in its main sequence, radiates energy continuously but stays the same (i) State the energy source in the Sun.	e size.
c) Describe the evidence that suggests some stars are moving away from Earth.	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

4 A student investigates the motion of a trolley along a horizontal runway using the apparatus in Figure 4.

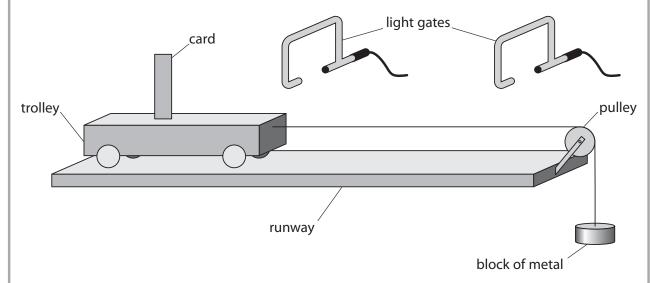


Figure 4

A trolley is attached to a string passing over a pulley.

A block of metal hangs on the end of the string.

Each light gate measures the time it takes for the card to pass through the gate.

When the trolley is released, it moves along the track.

A computer measures the time it takes for the card to pass between each light gate.

(a) (i) The card took 0.080 s to pass through the first light gate.

The width of the card is 5 cm.

Calculate the average speed, in m/s, of the trolley through the first light gate.

(2)

average speed = m/s

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Another trolley passes through the first light gate at a velocity of 0.72 m/s.

This trolley passes through the second light gate at a velocity of 1.1 m/s.

The time it takes for the card on the trolley to travel between the two light gates is 0.53 s.

(ii) State the equation relating acceleration, change in velocity and time.

(1)

(iii) Calculate the acceleration of the trolley between the two light gates.

(2)

acceleration = m/s²

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) Figure 5 shows a graph of acceleration against force for three trollies of different mass that are pulled along the runway.

The graphs for the trollies are labelled P, Q and R.

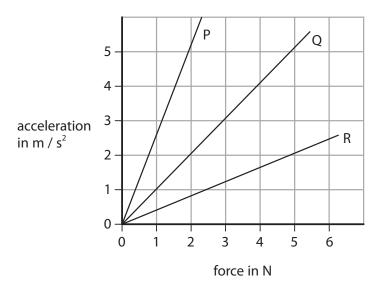


Figure 5

Use the information from the graph.

(i) Calculate the mass of trolley Q

(2)

mass of trolley Q =kg

(ii) Describe how the graph shows that trolley R has the greatest mass.

(2)

(Total for Question 4 = 9 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

- **5** A man throws a stone into a pond.
 - (a) The stone makes waves that spread out in circles.

Figure 6 shows some of the waves.

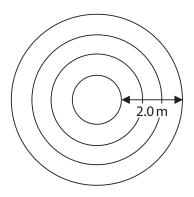


Figure 6

(i) Which of the following changes is correct as the waves spread out?

(1)

- A the amplitude is higher
- B the frequency is higher
- C the wavefront is longer
- **D** the period is longer
- (ii) The stone hits the water 4.0 m from the bank.

The wave speed is 0.70 m/s.

Calculate the time for the wave to reach the bank.

(2)

time =s

DO NOT WRITE IN THIS AREA

(iii) The wavelength of the waves is the distance between one wavefront and the Use the diagram to find the wavelength of the waves.	next.
ose the diagram to find the wavelength of the waves.	(1)
wavelength =	
(iv) There is a cork which bobs up and down in the water as the wave goes past.	
Explain how this shows that the wave is transverse.	(-)
	(2)
b) On the other side of the pond, the water becomes very shallow.	
In the shallow water, the wave is slower but the frequency does not change.	
State what happens to the wavelength when a wave reaches the shallow water.	(1)
c) Devise a method of measuring the frequency of the waves.	(2)
(Total for Question 5 = 9 mag	arks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

6 (a) What is the approximate size of a hydrogen atom?

(1)

- \triangle **A** 10^{-3} m
- B 10⁻¹⁰ m
- \square **D** 10^{-31} m
- (b) Figure 7 is a diagram of three atoms.

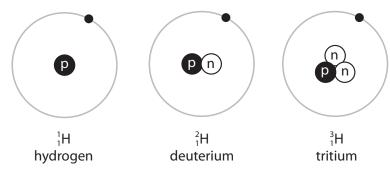


Figure 7

Give reasons why these atoms are isotopes.

(2)

DO NOT WRITE IN THIS AREA

(c)	Some isotopes are unstable. They emit β^- particles when they decay. Explain how a nucleus changes when a β^- particle is emitted.	
		(2)
••••••		
(d)	Other unstable isotopes emit alpha particles.	
	Which of these describes an alpha particle?	(-)
X	A a hydrogen nucleus	(1)
X	B a hydrogen atom	
X	C a helium nucleus	
×	D a helium atom	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(e) Figure 8 shows an atom of iron with its electron orbits.

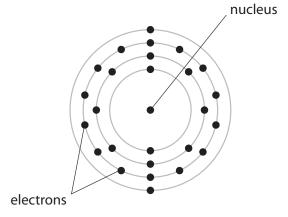


Figure 8

When iron is heated it glows red.

Explain what happens to the electrons during this process.

(Total for Question 6 = 9 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

7	(a) (i)	Wł	nich type of surface will produce a specular reflection?	(1)
	\times	A	calm water	
	\times	В	clothing	
	\times	C	paper	
	\times	D	road surface	
	(ii)	As	surface appears bright white when white light is shone onto it.	(1)
		Th	is is because it	
	\times	A	absorbs all the white light	
	×	В	absorbs only red and blue light	
	\times	C	absorbs only green and blue light	
	×	D	absorbs none of the white light	
	(b) A s	tud	ent looks through a blue filter at a green leaf on a white background.	
	De	scri	be the colours that the student sees.	
				(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) Figure 9 shows an image taken at night using a camera that is sensitive to infrared radiation.

Figure 9

Radiation with shorter wavelengths shows as brighter areas in this image. Explain why the people can be seen against the background in this image.

.....

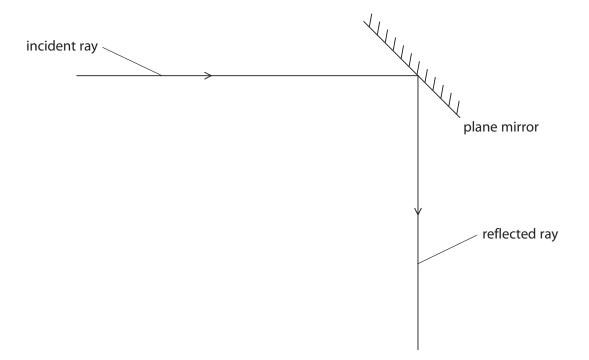
(2)

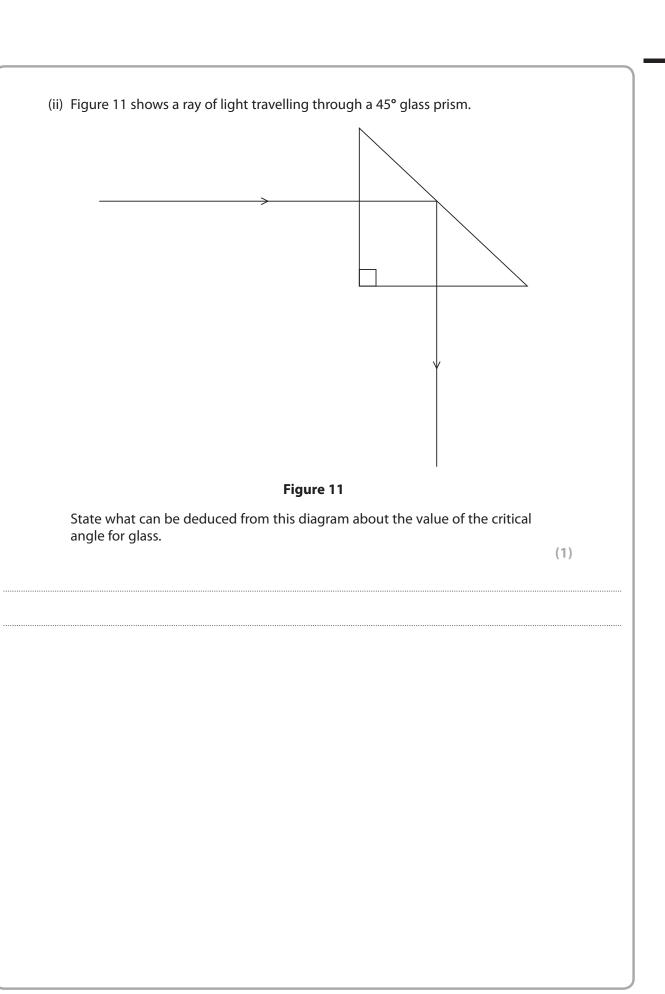
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(d) A student investigates how light is reflected from a plane mirror.

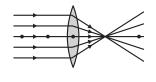
Figure 10 shows part of the student's investigation.

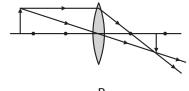


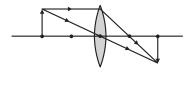

Figure 10

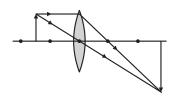
- (i) Complete the diagram to show
 - the normal
 - the angle of incidence (i) and the angle of reflection (r).

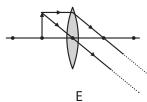
(2)




DO NOT WRITE IN THIS AREA




(e) Figure 12 shows ray diagrams with objects placed at different distances from lenses.


(3)

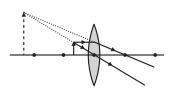


Figure 12

A student writes the conclusion:

'All lenses produce real images'.

Comment on the student's conclusion.

(Total for Question 7 = 12 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

8 Shot-put is an Olympic event.

The shot is a heavy ball.

An athlete throws the shot as far as possible.

A sports scientist analyses an athlete's throw to help improve performance.

(a) The scientist can measure several quantities in the analysis.

Which one of the following is a scalar quantity?

(1)

- A acceleration
- **B** force
- C mass
- **D** velocity
- (b) The scientist takes pictures of the athlete every 0.1 s during one throw.

Figure 13 shows the pictures of one throw.

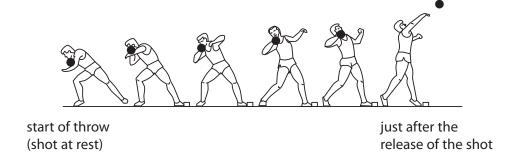


Figure 13

(i) Estimate the amount of time during the throw when the shot is in the athlete's hand.

(1)

·ime =

DO NOT WRITE IN THIS AREA

(ii) Explain how the scientist could improve this method of analysing the throw.	(2)
(iii) The average acceleration of the shot while in the athlete's hand is 20.6 m/s². The mass of the shot is 7.26 kg. Calculate the average force that the athlete applies to the shot during the thro	ow. (2)
force =	N
(iv) In another throw, the shot is in the athlete's hand for 0.48 s. The average acceleration during this time is 23 m/s². Calculate the velocity of the shot as it leaves the athlete's hand.	(3)
velocity =	m/s

 (c) In one throw, the shot continues to rise by another 1.3 m after it leaves the athlete's hand. The mass of the shot is 7.26 kg. (i) Calculate the amount of gravitational potential energy gained by the shot. 	(2)
gravitational potential energy gained =	J
(Total for Question 8 = 13 ma	

BLANK PAGE

DO NOT WRITE IN THIS AREA

9	(a)		nich of the following particles is absorbed and emitted during a nuclear fission action?	(1)
	X	A	electron	
	X	В	neutron	
	X	C	positron	
	X	D	proton	
	(b)	Ex	xplain the use of a moderator in a nuclear reactor.	(3)
	(c)		wer stations that use nuclear reactors produce high level radioactive waste.	
		Sta	ate one way that this radioactive waste can be disposed of safely.	(1)

DO NOT WRITE IN THIS AREA

Describe the similarities and differences between nuclear fission and nuclear fusion.			
			(6)
		(Total for Que	stion 9 = 11 marks)
			-

DO NOT WRITE IN THIS AREA

10 (a) A house has a boiler to provide hot water.

One type of boiler burns natural gas.

Natural gas is a non-renewable source of energy.

(i) State a renewable source of energy that could be used to heat water in a house.

Figure 14 shows some information in a booklet supplied with a gas boiler.

fuel	natural gas
temperature of hot water	65°C
energy supplied to the boiler in one second	7500 J
efficiency of boiler	96%

Figure 14

(ii) Calculate the energy transferred to the water by the boiler in one second.

(2)

energy transferred to water =

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) Figure 15 shows a foam jacket around a copper cylinder.

Figure 15

The hot water is stored in the copper cylinder until it is needed.

The foam jacket helps to keep the water hot.

Explain how the foam helps to keep the water hot.

(2)

DO NOT WRITE IN THIS AREA

*(c) A company has developed a new material white of foam around the cylinder.	ich they think could be used instead	
Devise an investigation they could carry out to insulating properties of their new material wit	h those of the foam.	
	(6)	
		•••••
	(Total for Question 10 = 11 marks)	
	TOTAL FOR PAPER = 100 MARKS	_

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Equations

 $(\text{final velocity})^2 - (\text{initial velocity})^2 = 2 \times \text{acceleration} \times \text{distance}$

$$v^2 - u^2 = 2 \times a \times x$$

energy transferred = current \times potential difference \times time

$$E = I \times V \times t$$

For transformers with 100% efficiency,

potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil

$$V_p \times I_p = V_s \times I_s$$

change in thermal energy = mass \times specific heat capacity \times change in temperature

$$\Delta Q = m \times c \times \Delta \theta$$

thermal energy for a change of state = $mass \times specific$ latent heat

$$Q = m \times L$$

$$P_1 V_1 = P_2 V_2$$

to calculate pressure or volume for gases of fixed mass at constant temperature

energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$

$$E = \frac{1}{2} \times k \times x^2$$

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

