

Biodiversity

- Define species, habitat & biodiversity.
- Sampling methods for animals & plants.
- Measuring biodiversity.

A Species

One type of organism.

 Individuals can interbreed to produce fertile offspring.

A Habitat

 The place where individuals of a species live.

- Each habitat has a specific set of conditions.
 - Eg. Dark, damp, cold, undisturbed
 - A Scottish woodland floor.

Biodiversity

The variety of life.

- The range of different species of organism.

- The range of genes they contain.
 - Even within a single species.
- The range of ecosystems they are part of.
 - There may be many different habitats within a small area.

Introduction

 UK Oak trees support 284 different species of insect.

How do we know this?

 Someone has devised methods of catching & studying them all.

Animals or Plants

- Animals are more difficult to sample than plants.
 - Plants don't often run off.

 The techniques used are therefore different.

Sampling Animals

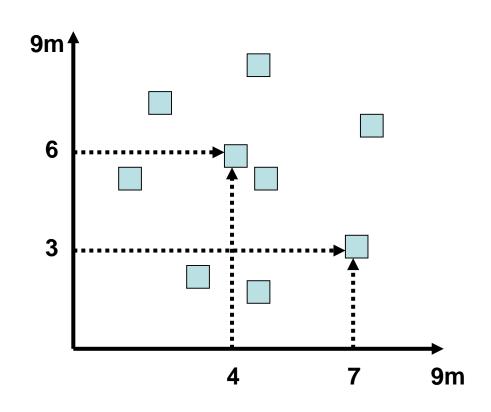
 This involves using nets or traps in order to catch the animals as they go about their normal activities.

See sheet for examples.

Sampling Plants

- Two main types of sampling:
 - Random sampling
 - Systematic sampling

Random Sampling


 When we are only interested in finding out the types & abundance of plants in an area.

- Difficult to look at every plant in an area.
 - So we take random samples of the plot

Grid Method

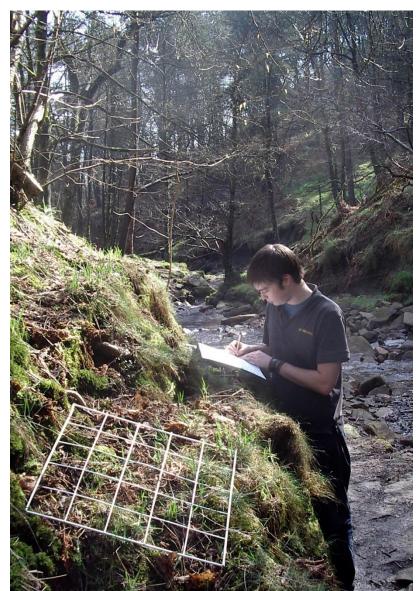
- Make a pair of axes with a tape measure.
- Use random numbers to generate sets of coordinates.
- Visit each site and study the plants in that area.
- Continue until enough samples have been made.

$$73 = (7,3)$$

$$46 = (4,6)$$

Etc...

How do you know which plants to look at?


Use a quadrat.

- There are 2 types:
 - Frame quadrat.
 - Point quadrat.

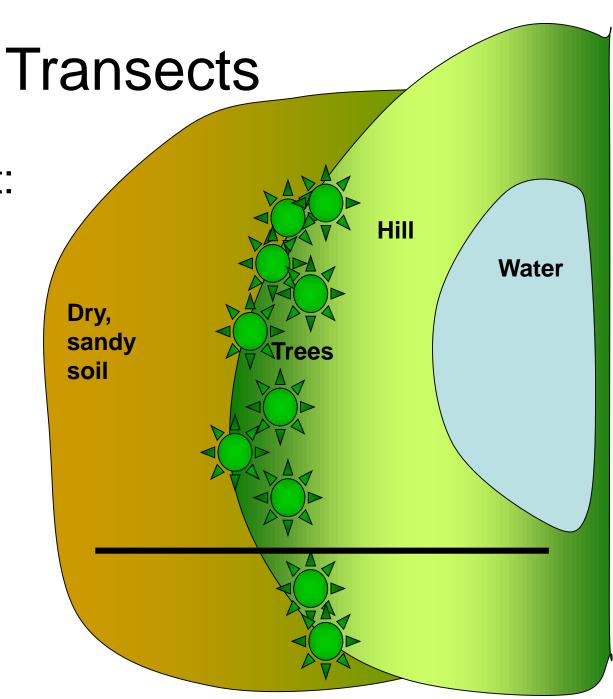
Frame Quadrat

- A square frame that defines the area of study.
 - Sometimes
 subdivided into
 smaller squares.
 - Available in a variety of sizes.

Point Quadrat

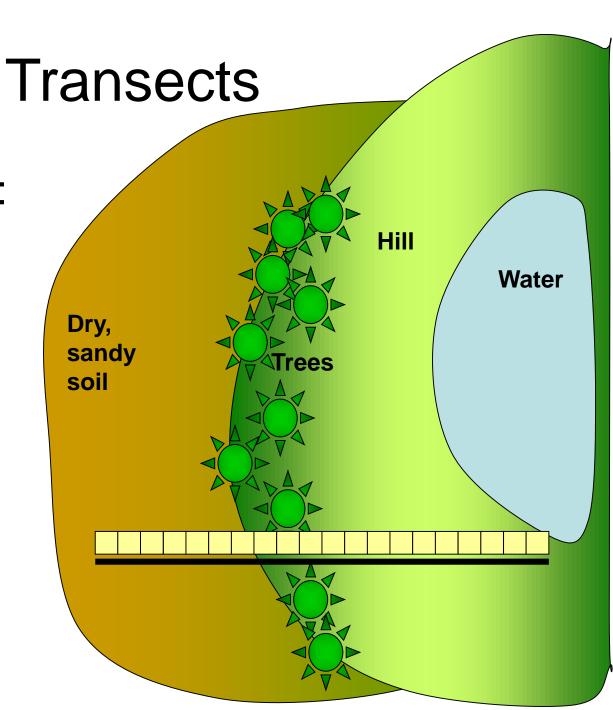
- A horizontal bar through which pins are pushed until they touch the ground.
- Any plant that the pins touch on their way down is counted.

Systematic Sampling

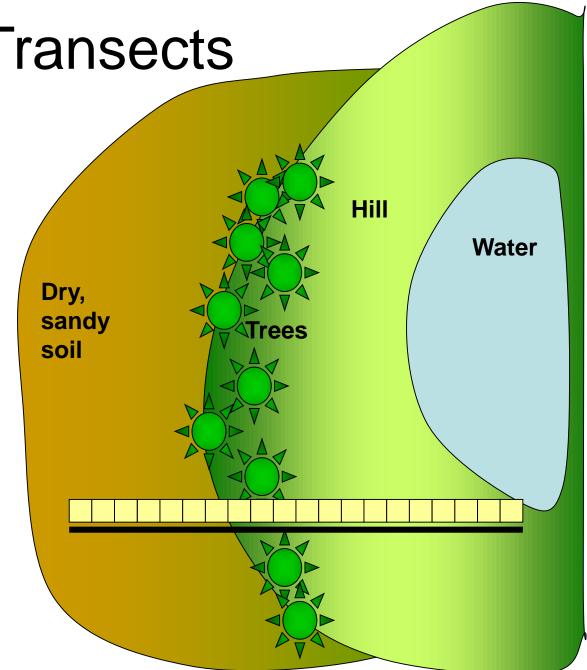

- When we are looking for a pattern of distribution of a plant that may be caused by a change in abiotic conditions.
 - Eg. Looking at how the abundance of a species varies with soil type or light intensity.

We use transects to do this.

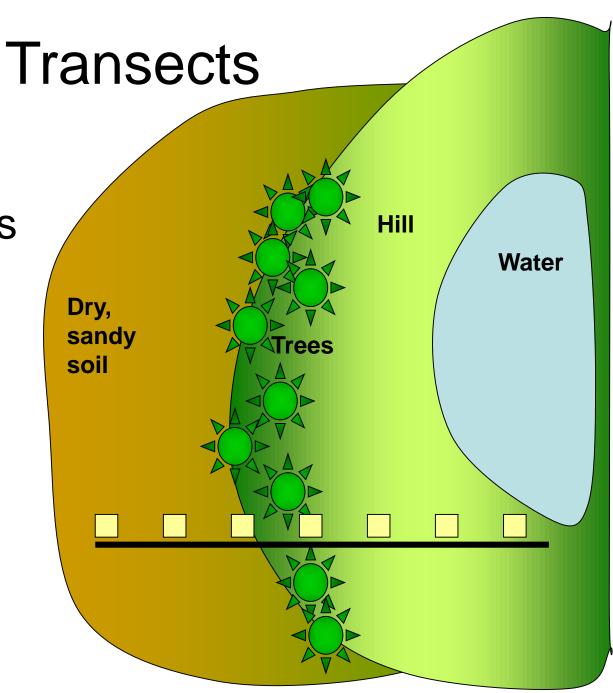
• Line Transect:


A line (often string)
 marking the area to sample.

Belt Transect:


- A series of quadrats
 placed along the transect.
- Plants within the quadrats can be counted.

Transects


 Continuous **Belt Transects** can be used where the length of the transect is small.

Interrupted
 Belt Transects
 can be used
 where the
 length of the
 transect is

large.

How can we count the plants in our quadrat?

Density

- Count the number of individual plants per unit area.
- This can be difficult and labour intensive.

Frequency

- A measure of the presence/absence of a species at a sampling point.
- Requires a large number of sampling points.

How can we count the plants in our quadrat?

- Percentage Cover
 - The percentage of the ground area covered by a species from a bird's eye view.
 - Overcomes the need for counting individuals.
 - Total percentage is often >100 due to overlapping.

Biomass

- A measure of above-ground dry weight.
- A destructive measure.
 - Plants need to be harvested & dried.

How can we count the plants in our quadrat?

- Abundance Scales
 - Estimating abundance by giving each species a 5 point score.
 - DAFOR Scale
 - Dominant
 - Abundant
 - Frequent
 - Occasional
 - Rare
 - The numerical Braun-Blanquet scale
 - -5 = 75%, 4 = 50-75%, 3 = 25-50%, 2 = 5-25%, 1 = 0-5%.
 - Very subjective.

Measuring Biodiversity

Need to know:

- Species Richness
 - The number of different species found in a habitat.
 - Can be measured qualitatively
 - Walk round and record the different species found.

Species Evenness

- The abundance of individuals of each species.
- Needs to be measured quantitatively
 - Count the number of individuals of each species.
 - Often done by taking samples.

Estimating Species Evenness

Plants are easy – just count them.

- Animals are more difficult:
 - Large animals (foxes, rabbits):
 - Just observe & count them.
 - Small animals:
 - Mark, Release & Recapture.

Estimating the size of an animal population

- The Mark-Release-Recapture technique:
 - A sample of a species is captured & marked (S₁).
 - This sample is replaced & allowed to mix.
 - Another sample is captured (S_2) .
 - The number of marked individuals in the second sample is called R.
 - The total number of individuals in the population (Lincoln Index) can be estimated as:

Total population =
$$S_1 \times S_2$$

Simpson's Diversity Index

- Consider two fields:
 - A football pitch and a meadow

Simpson's Diversity Index

 Takes into account both species richness and species evenness.

```
D = 1-[\Sigma(n/N)^2]
```

Where: D is Diversity Index

n is number of individuals of a particular species

N is total number of all individuals of all species

Example

Species	Football pitch			Meadow		
	n	n/N	(n/N) ²	n	n/N	(n/N) ²
Fescue grass	95	0.950	0.9025	38	0.380	0.1444
Cocksfoot grass	1	0.010	0.0001	16	0.160	0.0256
Buttercup	0.5	0.005	0.0000	14	0.140	0.0196
Clover	2	0.020	0.0004	22	0.220	0.0484
Thistle	1	0.010	0.0001	5	0.050	0.0025
Dandelion	0.5	0.005	0.0000	5	0.050	0.0025
Sum	100		0.90	100		0.24
			0.10			0.76

D ranges from 0 - 1

High D = a more diverse habitat.

- More variety of organisms can live there
- A small change in environmental conditions may affect one species but this represents a low proportion of total organisms so effect on habitat is small.
 - The habitat is stable and can withstand change.

Low D = a less diverse habitat.

- Fewer variety of organisms can live there
- A small change in environmental conditions may still affect just one species but this may represent a large proportion of total organisms so effect on habitat may be large
 - The habitat is unstable and cannot withstand change.

Genetic Biodiversity

- All members of a species share the same genes.
- However, there is still variation between individuals.

- The variation comes from the different versions (alleles) of the genes.
- The more varied the alleles present in a population, the more diverse the population.
- The genetic biodiversity is often referred to as the gene pool.

Genetic Biodiversity

 Species with greater genetic biodiversity are more likely to be able to adapt to a changing environment

Factors affecting genetic biodiversity

- Mutations creating new alleles.
- Interbreeding between populations creating gene flow between them.
- Selective breeding optimising a particular characteristic or producing a rare breed.
- Captive breeding with only a few individuals to breed from.
- Artificial cloning.
- Natural selection.
- Genetic bottlenecks.
- The founder effect.
- Genetic drift.

Measuring genetic biodiversity

 By measuring polymorphism we can estimate genetic biodiversity.

- Polymorphism:
 - A gene for which there are two or more different alleles.
 - Most genes are monomorphic
 - This is why all members of a species look roughly the same.

Measuring genetic biodiversity

 We use the proportion of polymorphic genes to assess genetic biodiversity.

$$Proportion \ of \ polymorphic \ gene \ loci = \frac{Number \ of \ polymorphic \ gene \ loci}{Total \ number \ of \ gene \ loci}$$

This is often expressed as a percentage.

Individual Projects

- Produce
 - A large poster
 - A factsheet
 - An information leaflet
 - TV report with images
 - Radio programme
 - TV/Radio drama series
- To show what affects biodiversity and why & how biodiversity should be maintained.

Factors affecting biodiversity

- Human influence
 - Deforestation
 - Agriculture
 - Climate change
 - Land management

Reasons for maintaining biodiversity

- Aesthetic reasons
- Economic reasons
- Ecological reasons

Methods for maintaining biodiversity

- In situ conservation
 - Wildlife reserves
 - Marine conservation zones
- Ex situ conservation
 - Botanic gardens
 - Seed banks
 - Captive breeding programmes
- Conservation agreements
 - International Union for the Conservation of Nature
 - The Rio Convention
 - The countryside Stewardship Scheme